Do tej pory obliczaliśmy granice ciągów wykorzystując twierdzenie o działaniach na granicach ciągów. Teraz przedstawimy kilka przykładów dowodów, że granicą ciągu jest określona liczba. Wykorzystamy przypomnianą powyżej definicję granicy ciągu. Przykład 1 Wskażemy wszystkie wyrazy ciągu , które należą do otoczenia o
Przykłady granic, których wynik jest oczywisty. Granica ciągu przy n rozbieżnym do nieskończoności. Granica ciągu. Potęga. Wartość bezwzględna. ZASADA 2: Granice skomlikowanych funkcji złożonych będących sumą, różnicą, iloczynem, ilorazem lub potęgą funkcji, możesz niemal zawsze rozbić na granice prostszych wyrażeń. Takie granice liczy się znacznie łatwiej! 2.2. Granice funkcji - wzory
Udowodnij wzór-granica ciągu Agnieszka: 7n udowodnij granicę lim przy n→∞ =7 n+1 19 paź 18:27 Grześ: 7n n 7 lim przy n→∞ =* n+1 n Teraz już potrafisz udowodnić 19 paź 18:31 Agnieszka: niestety nie 19 paź 18:32 g: pod n podstawia sie 0? 19 paź 18:32 Grześ: 1 Masz tam ułamek taki ułamek przy n→∞ redukuje się do zera n 19 paź 18:33 Agnieszka: ja w ogóle nie rozumie tych granic 19 paź 18:33 g: pierwsze n nad n skraca Ci sie a pozniej zostaje 7 przez 1=0 czyli wychodzi 7 19 paź 18:33 Grześ: n Ten ułamek skraca się i on nie jest brany pod uwagę n 19 paź 18:33 Agnieszka: aha ok 19 paź 18:34 Grześ: Masz agnieszka gg Wytłumacze ci ogólne pojęcie granic 19 paź 18:34 g: ale własnie czym to sie rozni moze wyjsc cos innego do podstawienia? 19 paź 18:34 Grześ: Albo zaczerpnij wiedze z tutejszego forum 19 paź 18:34 Agnieszka: Dzięki bardo 19 paź 18:34 g: a mozesz tutaj bo tez chcialabym zrozumiec 19 paź 18:34 Agnieszka: bardzo* 19 paź 18:34 Grześ: W tym przypadku, przy takim ułamku wyłącza się zawsze jak największą potęgę przed ułamek 19 paź 18:35 g: cos napisac o tych granicach bo czytam to co jest na forum i nic nie kumam 19 paź 18:35 g: to ze przed ulamek ok rozumiem ale co jest z tym zerem 19 paź 18:35 Agnieszka: mam mam 19 paź 18:35 Grześ: Przy takiej granicy jak masz tutaj, czyli z ułamkiem, z licznika i mianownika wyłączasz zawsze największą możliwą potęgę, a potem liczysz granice. Wszystkie ułamki, które w mianowniku maja n skracają się do zera, a z tej częsci co zostało liczymy granicę. W miarę łopatologicznie to wyjaśniłem 19 paź 18:36 Agnieszka: ja na zadanie domowe mam aż 13 przykładów do zrobienia z tych granic ciągów ojojo 19 paź 18:36 g: albo jak mialbys przyklad taki 2n−7=∞ 19 paź 18:36 Agnieszka: no ja juz teraz to rozumiem wypisałam sobie te podstawowe twierdzenia itp. 19 paź 18:37 g: to ze wyciagasz najwieksza potege i co dalej sie robi kumam ale zawsze jest n−>∞? 19 paź 18:37 Grześ: To to jest ciąg nieskończony, sam spójrz.... 19 paź 18:37 Grześ: Różnie jest, ale przy granicy ciągu jest ∞, ale są też granice funkcji itp.... 19 paź 18:38 g: milo mi gosia jestem 19 paź 18:38 g: pogubie sie w tym wszystkim dopiero to zaczynam a juz sie gubie 19 paź 18:38 g: an = √n+2 −√n oblicz granice 19 paź 18:41 Agnieszka: a jak zabrać sie za to ? n√2n3 −1 /√2n3 −1 19 paź 18:42 Grześ: W tym przykładzie musisz skorzystać z tego: a2−b2=(a+b)(a−b) 19 paź 18:43 Grześ: to jest dla g 19 paź 18:43 Agnieszka: te granice ciągów to moja pieta achillesowa ehh... 19 paź 18:43 Grześ: Masz to g 19 paź 18:45 Agnieszka: 2n +5 albo i to razem do potęgi n (ma wyjść +∞) n + 2 19 paź 18:46 gosia: czyli tak (√n+2)2 − (√n)2 an = = √n+2+√n 19 paź 18:48 gosia: tak zaczac? 19 paź 18:48 Grześ: gosia masz dobrze, teraz wyłącz największe potęgi 19 paź 18:49 gosia: n+2−n 2 = = √n+2+√n √n+2+√n 19 paź 18:50 gosia: czyli nie tak juz wczesniej musze wylaczyc? 19 paź 18:50 gosia: √n ? 19 paź 18:51 Grześ: Dobrze zrobiłaś, teraz hmm, coś z mianownikiem pokombinować trzeba. Spróbuj √n powyłączać 19 paź 18:51 gosia: bede za jakies gora 40 min wroce i bede dalej rozkminiac i uczyc sie granic ciagow 19 paź 18:52 Grześ: Agnieszka, daj jakiś przykład, z Tobą coś zrobię i spadać będę 19 paź 18:53 gosia: ale co dalej nic mi sie nie skroci 19 paź 18:54 gosia: gdybym mogla to bym zostala i dalej tlumaczyla ale zaraz wracam do domu i wtedy wejde na neta i tutaj 19 paź 18:55 Agnieszka: już pisałam wcześniej 19 paź 18:59 Agnieszka: napisałam 2 przykłady które mam na zadanie domowe 19 paź 19:00 Agnieszka: jesteś Grzesiu 19 paź 19:01 Jack: dawaj je, coś poradzimy. Przepisz je jeszcze raz dla czytelności. 19 paź 19:03 Grześ: Chyba tak on wyglądał... Hmm, nie mam pomysłu, nie wiem dokładnie jak się zachowuje pierwiastek stopnia n−tego, może ktoś będzie wiedzieć 19 paź 19:04 Jack: n√n3≤n√2n3−1≤n√2n3 limn→∞ n√n*n√n*n√n=1*1*1=1 limn→∞ n√2n3=n√2*n√n*n√n*n√n=1*1*1*1=1 Zatem środek też biega do 1. 19 paź 19:07 Jack: To wczesniejsze to rozpisanie samego licznika, ale to nic nie daje, bo mianownik jest rozbieżny więc nie można zastosować wzoru na iloraz granic. Może wiec tak. (2n3−1)1n−12=(1+2n3−2)2−n2n= =(1+2n3−2)12n3−2*(2n3−2)*(2−n2n)= =e(2n3−2)*(2−n2n)=e(2−n)(4n4−4n)2n→∞ 19 paź 19:15 Jack: ups... ostatnie przejście: e−4n5+4n2+8n4−8n2n→ 0 (bo e−∞→0) 19 paź 19:18 Agnieszka: dzięki bardzo * 19 paź 19:34
6.2 Klasówka Sinus, cosinus i tangens kąta ostrego w oparciu o definicję. Wyznaczanie wartości funkcji trygonometrycznych. Odczytywanie wartości funkcji z tablic lub kalkulatorów. 6.2.2 Test Wyznaczanie wartości funkcji sinus, cosinus i tangens kątów o miarach od 0 stopni do 180 stopni. 6.2.2 Klasówka Wyznaczanie wartości funkcji
Granica sumy, różnicy, iloczynu i ilorazu ciągów Dane są ciągi \( \left( a_{n} \right) \) i \( \left( b_{n} \right) \) określone dla \( n\geq 1 \) Jeśli \( \lim_{n \rightarrow \infty } a_{n} =a \) oraz \( \lim_{n \rightarrow \infty } b_{n} =b \), to: \[ \lim_{n\rightarrow\infty }\left( a_{n}+b_{n} \right) =a+b \]\[ \lim_{n \rightarrow \infty }\left( a_{n}-b_{n} \right) =a-b \]\[ \lim_{n \rightarrow \infty }\left( a_{n}*b_{n} \right) =a*b \] Jeżeli ponadto \( b_{n}\neq 0 \) dla \( n\geq 1 \) oraz \( b\neq 0 \), to: \[ \lim_{n\rightarrow \infty}\frac{a_{n}}{b_{n}}=\frac{a}{b} \] Suma wyrazów nieskończonego ciągu geometrycznego Dany jest nieskończony ciąg geometryczny \( \left(a_{n} \right) \), określony dla \( n\geq 1 \), o ilorazie \( q \). Niech \( S_{n} \) oznacza ciąg sum początkowych wyrazów ciągu \( \left(a_{n} \right) \), to znaczy ciąg określony wzorem \( S_{n}=a_{1}+a_{2}+…+a_{n} \) dla \( n\geq 1 \). Jeżeli \( \left|q \right|<1 \), to ciąg \( \left(S_{n} \right) \) ma granicę. \[ S=\lim_{n\rightarrow \infty}S_{n}=\frac{a_{1}}{1-q} \] Tę granicę nazywamy sumą wszystkich wyrazów ciągu \( \left(a_{n} \right) \).
Klasówki i testy - Rachunek różniczkowy zadania. 12.1 Test (R)Granice funkcji, granice jednostronne, ciągłość funkcji i własności funkcji ciągłych. Popularne. 12.1 Klasówka (R)Granice funkcji, granice jednostronne, ciągłość funkcji i własności funkcji ciągłych. 12.2 Test (R)Pochodne funkcji wymiernych.

Wzór na dla \( n-ty \) wyraz ciągu geometrycznego dla \( \left(a_{n} \right) \) o pierwszym wyrazie \( a_{1} \) i ilorazie \( q \): \[ a_{n}=a_{1}*q^{n-1} \] dla \( n\geq 2 \) Wzór na sumę \( S_{n}=a_{1}+a_{2}+…+a_{n} \) początkowych \( n \) wyrazów ciągu geometrycznego: \[ S_{n}=a_{1}*\frac{1-q^{n}}{1-q} \] dla \( q\neq 0 \) \[ S_{n}=n*a_{1} \] dla \(q=0 \) Między sąsiednimi wyrazami ciągu geometrycznego zachodzi związek: \[ a_{n}^{2}=a_{n-1}*a_{n+1} \] Procent składany Jeżeli kapitał początkowy \(K \) złożymy na \( n \) lat w banku, w którym oprocentowanie lokat wynosi \( p% \) w skali rocznej i kapitalizacja odsetek następuje po upływie każdego roku trwania lokaty, to kapitał końcowy \( K_{n} \) wyraża się wzorem: \[ K_{n}=K*\left(1+\frac{p}{100} \right)^{n} \]

Dwusieczna kąta półprosta mająca początek w wierzchołku kąta i przecinająca ten kąt na dwa równe kąty. Zamknij. Kąt wypukły to kąt, którego wnętrze jest figurą wypukłą. Zamknij. Odcinek o końcach nazywamy zbiór wszystkich punktów prostej leżących między punktami wraz z tymi punktami. Marysia17 Użytkownik Posty: 3 Rejestracja: 2 paź 2006, o 22:04 Płeć: Kobieta Lokalizacja: Gdynia wzór na sumę ciągu Sprawa jest trochę zawiła, jak dla średnio mądrej licealistki. A mianowicie problem tkwi: 1. W znalezieniu wzoru sumy ciągu u(n)=n(n+1) i wykorzystaniu tego wzoru do znalezienia sumy ciągu u(n)=n^2. 2. analogicznie do ad. 1- suma ciągu u(n)=n(n+1)(n+2) i znalezienie sumy ciągu u(n)=n^3 3. analogicznie do suma ciągu u(n)=n(n+1)(n+2)(n+3) i znalezieniu sumy ciągu u(n)=n^4 4. Wykorzystaniu powyzszego do ustalenia wzoru na sume ciągu u(n)=n^k Dziękuję za wszelką pomoc. Marysia17 Użytkownik Posty: 3 Rejestracja: 2 paź 2006, o 22:04 Płeć: Kobieta Lokalizacja: Gdynia wzór na sumę ciągu Post autor: Marysia17 » 3 paź 2006, o 16:26 Zależy mi najbardziej na podpunkcie 4. Ostatnio zmieniony 5 paź 2006, o 01:37 przez Marysia17, łącznie zmieniany 1 raz. mol_ksiazkowy Użytkownik Posty: 8514 Rejestracja: 9 maja 2006, o 12:35 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 2754 razy Pomógł: 703 razy wzór na sumę ciągu Post autor: mol_ksiazkowy » 3 paź 2006, o 16:46 \(\displaystyle{ \Bigsum_{k=1}^n k(k+1)(k+2)...(k+r)=\frac{1}{r+2}n(n+1)(n+2)....(n+r)(n+r+1)}\) Marysia17 Użytkownik Posty: 3 Rejestracja: 2 paź 2006, o 22:04 Płeć: Kobieta Lokalizacja: Gdynia wzór na sumę ciągu Post autor: Marysia17 » 3 paź 2006, o 17:12 A wzór na sumę ciągu u(n)=1^k+2^k+3^k...n^k z jakimś wyjaśnieniem jest możliwy do stworzenia? mol_ksiazkowy Użytkownik Posty: 8514 Rejestracja: 9 maja 2006, o 12:35 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 2754 razy Pomógł: 703 razy wzór na sumę ciągu Post autor: mol_ksiazkowy » 3 paź 2006, o 19:15 Marysia17 napisała: A wzór na sumę ciągu u(n)=1^k+2^k+3^k...n^k z jakimś wyjaśnieniem jest możliwy do stworzenia?Ależ tak!! ogólnie co widać łatwo u(n) jest wielomianem zmiennej n stopnia k+1....ale istnieje także możliwość takiego zapisu: \(\displaystyle{ u(n)=1^k+2^k+3^k+....+n^k= \bigsum_{i=1}^{k} a_{i,k} {n+i\choose k+1}}\) gdzie wspolczynniki sa mozliwe do odczytania z tablicy: \(\displaystyle{ a_{i,k}}\), to i-ty element k tego wiersza .........................1....................... ...................1..........1................. ............1...........4..........1........... .......1.........11.........11.........1..... ..1........26.........66........26.........1 ................................................. wg reguły: Każdy element wewnatrz tabilcy jest sumą jego dwóch górnych sąsiadów pomnożonych odpowiedznio przez numer lewego (prawego ) skosu, w którym się on znajduje, np. 26= 4*1+ 2*11, bo 2 jest w czwartym skosie prawym, a 11 jest w drugim skosie lewym itd. i tak np.: \(\displaystyle{ u(n)=1^4+2^4+3^4+...+n^4= {n+1\choose 5}+11 {n+2\choose 5}+11{n+3\choose 5}+{n+4\choose 5}}\)
Jawne i rekurencyjne wzory na ciąg geometryczny. Google Classroom. Znajdujemy jawny wzór ciągu geometrycznego, dla którego mamy podane pierwsze kilka wyrazów ciągu. Potem odkrywamy równoważne formy jawnego wzoru i znajdujemy odpowiadający mu wzór rekurencyjny.
Analiza: Granice Pochodne Całki nieoznaczone Całki oznaczone Szeregi
Na podstawie wyrażenia nieoznaczonego nie możemy określić wyniku granicy. Jedyne co możemy zrobić, to policzyć granicę od początku. Tak aby nie otrzymać wyrażenia nieoznaczonego. Jak powyżej widać, granice ciągów, z których wychodzi jedno wyrażenie nieoznaczone ∞/∞ w rzeczywistości mogą mieć różne wartości.
Granica ciągu geometrycznego malejącego Nieskończenie wielu klientów wchodzi do baru. Pierwszy zamawia jedno piwo, drugi zamawia pół piwa, trzeci - ćwierć, itd. Barman stawia na blacie dwa piwa - klienci nie kryją oburzenia: Tylko tyle? Jak mamy się tym niby …? Na co barman odpowiada: Dajcie spokój, musicie znać swoją granicę. Barman dobrze rozliczył swoich klientów? Jaką granicę powinni znać klienci? Poniższa animacja przedstawia całą sytuację w jaki sposób powstaje drugie piwo. Rozwiązanie: Nieskończony klient zamówi odpowiednią ilość piwa bliską 0. Zatem jak wskazuje granica barman dobrze rozliczył swoich klientów podając 2 piwa. Post nr 285
Zadanie 10. (1 pkt) Otrzymasz dostęp do wszystkich klasówek i testów, oraz płatnych artykułów przez dwie godziny (120min)! Sprawdź się w teście z trygonometrii na poziomie rozszerzonym! Miara łukowa kąta, wartości funkcji trygonometrycznych, równania, zależności między funkcjami. Rozwiąż test i od razu poznaj swój wynik.
Jeżeli limn→∞ an =a i limn→∞ bn =b to: limn→∞ ( an + bn ) = a+b , limn→∞ ( an - bn ) = a-b , limn→∞ ( an bn ) = ab , ∃ k∈N+ ∀ n>k ( bn≠0 ∧ b≠0 ) ⇒ limn→∞ an bn = ab , ∃ k∈N+ ∀ n>k ( an ≥ bn ⇒ a≥b ) . O ile w mianowniku można by zastosować wzory skróconego mnożenia, poznane jeszcze w szkole w średniej, to w liczniku nie koniecznie znamy/ pamiętamy od razu gotowy wzór. Wykorzystuje więc wzór ogólny na n-tą potęgę sumy dwóch liczb (do doboru współczynników pomocny jest również tzw. m9NP.
  • 9jzbzsu2kj.pages.dev/93
  • 9jzbzsu2kj.pages.dev/19
  • 9jzbzsu2kj.pages.dev/28
  • 9jzbzsu2kj.pages.dev/27
  • 9jzbzsu2kj.pages.dev/3
  • 9jzbzsu2kj.pages.dev/10
  • 9jzbzsu2kj.pages.dev/58
  • 9jzbzsu2kj.pages.dev/24
  • wzory na granice ciągów